High Energy Novel Cathode / Alloy Automotive Cell

Leif Christensen¹, Kevin Eberman¹, Jagat Singh¹, Zhonghua Lu¹, Dinh Ba Le¹, Vincent Chevrier¹, Bill Lamanna¹, Ang Xiao¹, Jeff Dahn², Mark Obrovac²

¹ - 3M Electronics Materials Marketing Division, ² - Dalhousie University May 13, 2013

Project ID # ES131

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

start: 10/01/2011

• finish: 1/15/2015

~42% complete

Budget

Total project funding

DOE share: \$4,577,909

Contractor share: \$1,961,961

Funding received in FY11: \$ 0

Funding for FY12 : \$1,700,000

Funding for FY13 : ~\$1,700,000

Barriers

Cycle Life, Energy, Cost and Thermal Stability

Targets

- Increase in energy density > 40%
- Reduce Cost > 25 %
- Maintain thermal stability and cycle life

Partners

- Argonne National Laboratory
- Dalhousie University

Project Objectives

To develop a high-performance battery cell for electrical vehicle with high energy density and low cost by integrating advanced chemistries

- at least 40% (1.4X base Wh/l) increase in energy density compared to baseline cell performance (NMC111 and Graphite)
- 35% increase in energy for advanced high voltage cathode
- 70% increase in volumetric capacity for alloy anode
- at least 25% lower cost per unit energy at cell level for a comparative integrated advanced materials cell to a baseline materials one

Milestones

Month/Year	Milestone or Go/No-Go decision						
Apr-12	Milestone : Complete the synthesis of advanced materials in quantities to build cells						
July-12	Milestone : Complete the prototype large cell build with baseline material						
Sep-12	Milestone: Finalized 18650 as the relevant format Demonstrated advanced materials capability to meet targets Demonstrated baseline materials performance per EV test protocol						
Sep-13	Milestone: Electrode coating procedures for advanced materials Baseline materials data package Preliminary 18650 with advanced materials to meet program goals						

Approach - High Energy NMC Cathode Development

Core-Shell Concept

- High Mn Shell: Cycle-Life
- High Ni Core: Capacity
- Combined: Stable High Energy

		Oxide	Capacity X	Density	X Voltage	X	Irrev Factor	=	Cathode Energy Factor
Electronics	٢	LCO	1.79	3.75	3.99		0.95		25.4 (graphite)
	1	LCO	1.79	3.75	3.99		0.88		23.6 (alloy)
	L	NCA	1.96	3.5	3.78		0.97		25.1 (graphite)
Automotive-		NMC	1.60	3.3	3.90		0.98		20.1 (graphite)
		NMC	1.60	3.3	3.90		0.95		19.6 (alloy)
Core-Shell -		126M	2.30	3.4	3.84		0.95		28.5 (alloy)
		126T	2.20	3.4	3.88		1.00		29.0 (alloy)

Accomplishment - Viable High Energy NMC Cathode

High Average Voltage; Excellent Rate Capability; Standard Electrolyte Stability; Matched to Si Anode

Accomplishment - Stable Voltage Curve

18650 Test Data;

Anode: 3M alloy / graphite composite; Cathode: High Energy NMC Cathode

Stable voltage curve than pure O₂ loss cathode

active/inactive

Approach - Si Anode Development

- Alloy Level
 - Composition
 - Microstructure
- Electrode Level
 - Graphite
 - Conductive Carbon
 - Binder
 - Dispersion Quality
- Cell Level
 - Matching Cathode
 - Electrolyte

Multi-facet approach to optimize energy, cycle-life and composite thickness

Accomplishment – Reduce Electrode Expansion

Accomplishment - Rational Si Electrode Optimization

Including KS6 flake graphite overcomes electrical network failure.

Approach - Cell Integration (HE NMC // Si)

Matching 1st cycle efficiency maximizes benefit of both materials

Accomplishment - 18650 Energy Improvement

Equivalent to 13.5Wh (4.65V) in state of the art 18650 hardware!

Accomplishment - Cycle Life Improvement

18650 Data (EV cycling)

- Anode: graphite

- Cathode: NMC 111

~90% retention after 800 DST cycles

18650 Data (C/2 rate cycling)

Anode: 3M alloy / graphite composite

- Cathode: NMC 111

Electrolyte: A & B

Electrolyte B gives ~50% improvement in cycle life over electrolyte A

Collaborations

- Dalhousie University (Jeff Dahn and Mark Obrovac)
 - Technical discussion for most of lithium ion battery related areas.
- Argonne National Lab (Ira Bloom and David Robertson)
 - Testing procedure (EV protocol) discussion.

Summary

Demonstrated Materials Development with

- Viable High Energy NMC cathode
- Stable voltage curve for Cathode
- Reduced Si electrode thickness expansion
- Rationale technique to study Si composite electrode

Demonstrated 18650 performance

- ~40% energy improvement
- Baseline material performance in EV protocol testing
- Cycle life improvement with developed electrolyte

Proposed Future Work

Improve Cycle life

- Improve Si alloy design
- Improve composite (Si alloy/Graphite) design
- Optimize High Energy NMC design

Increased 18650 testing

- Develop improved electrolytes
- Develop & test 18650 designs under range of conditions
- Initiate EV protocol testing

